### Interpreting Fine-grained Dermatological Classification with Deep Learning

S Mishra<sup>[1]</sup>, H Imaizumi<sup>[2]</sup>, T Yamasaki<sup>[1]</sup>

<sup>1</sup>The University of Tokyo <sup>2</sup>ExMedio Inc

**ISIC Skin Image Analysis Workshop** 





LONG BEACH CALIFORNIA June 16-20, 2019



### Scope

- Analyze model accuracy gap on benchmark datasets (CIFAR-10) vs. dermatological image corpus (DermAI\*)
  - SOTA on CIFAR ~98%, whereas dermoscopic ~90%
- Investigate leading label pairs by case studies
  - 3 leading pairs investigated by GradCAM/GBP
- Suggestions on better datasets of user-submitted images by our experience
  - Data Augmentation, FoV, Gamma & Illumination correction

### Dataset

User submitted Dermoscopic images across 10 most prevalent labels. 7264 images, split in 5:1 (train/test)

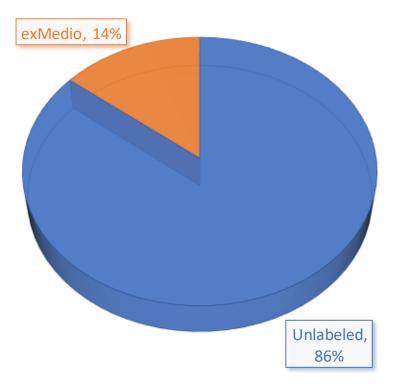


### Dataset

- Addressing the most common dermatological complaints.
- Ultimate goal:

To perform reliable rapid screening to reduce outpatient burden.

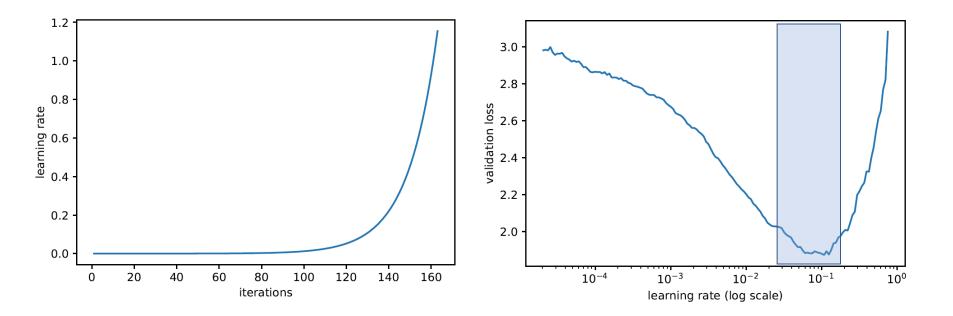
### DERMATOLOGICAL TYPES COVERED



## Model Learning

- Test several architectures of increasing size/complexity Resnet-34, ResNet-50, ResNet-101, ResNet-152
- 5:1 split, Early stopping, BCE with logits loss
  - Learning rate range test
  - SGD + Restarts (SGD-R)
  - SGD-R + Length Multiplication + Differential Learning
- Modus operandi tested on CIFAR-10 prior\*

### Learning Rate range-test



Steadily increase the LR and observe the Cross entropy loss Test several mini-batches to see a point of inflexion

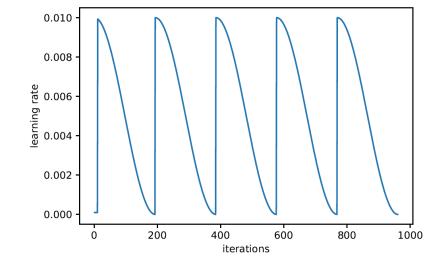
#### Reference:

Cyclical Learning rates for training NN, L. Smith [2017] Deep Learning, S. Verma et al. 2018

### SGD-R

1. Avoid monotonicity by Cosine scheduling function

$$v(t) = \frac{1}{2} \left( 1 + v \cos\left(\frac{t\pi}{T}\right) \right) + \varepsilon$$



Initial coarse fit by tuning the last (or last few) FC layer

2. Cycle Length Multiplyby integral powers of 2over whole architecture



### Tighter fit over all layers

*Reference:* SGD with Warm restarts, Loschilov [2017]

# Application

| Architecture | Acc. (Top-1) |        |
|--------------|--------------|--------|
| ResNet-34    | 88.9%        | Actual |
| ResNet-50    | 89.7%        | Ac     |
| ResNet-101   | 88.2%        |        |
| ResNet-152   | 89.8%        |        |

|            |        |            |           | COII    | 10310      |         |          |         |         |         |
|------------|--------|------------|-----------|---------|------------|---------|----------|---------|---------|---------|
| acne -     | 186    | 2          | 1         | 2       | 1          | 2       | 4        | 1       | 0       | 1       |
| alopecia - | 1      | 143        | 0         | 1       | 0          | 2       | 0        | 2       | 0       | 0       |
| blister -  | 2      | 0          | 117       | 6       | 13         | 4       | 1        | 0       | 7       | 0       |
| crust -    | з      | 0          | 8         | 128     | 1          | 0       | 0        | 1       | 9       | 0       |
| erythema - | 6      | 0          | 4         | 4       | 108        | 2       | 11       | 5       | 2       | 8       |
| leuko -    | 4      | 3          | 2         | 0       | 3          | 127     | 7        | 0       | 1       | 2       |
| macula -   | 3      | 0          | 1         | 4       | 14         | 3       | 115      | 7       | 1       | 2       |
| tumor -    | 0      | 0          | 2         | 4       | 2          | 2       | 6        | 173     | 11      | 0       |
| ulcer -    | 1      | 0          | 0         | 5       | 5          | 0       | 1        | 18      | 170     | 0       |
| wheal -    | 0      | 0          | 0         | 0       | 7          | 0       | 0        | 0       | 0       | 143     |
|            | acne - | alopecia - | blister - | crust - | erythema - | leuko - | macula - | tumor - | ulcer - | wheal - |
|            |        |            |           |         | Pred       | icted   |          |         |         |         |
|            |        | ResN       | let 1     | .52 C   | Confu      | usior   | י Ma     | trix    |         |         |
|            |        |            |           |         |            |         |          |         |         |         |

Confusion matrix

## Analysis

- Following best practices still leaves gap.
- Focus on the label pairs which account for most errors.
- Use GradCAM and Gradient Backprop to analyze what CNNs capture in learning process.

| Label 1  | Label 2    | Counts |
|----------|------------|--------|
| Ulcer    | Tumor      | 29     |
| Macula   | Erythema   | 25     |
| Blister  | Erythema   | 17     |
| Erythema | Wheal      | 15     |
| Crust    | Ulcer      | 14     |
| Blister  | Crust      | 14     |
| Macula   | Tumor      | 13     |
| Macula   | Leukoderma | 10     |
| Blister  | Ulcer      | 7      |
| Tumor    | Erythema   | 7      |
| Crust    | Tumor      | 5      |

Label pairs with at least 5 errors

#### Reference:

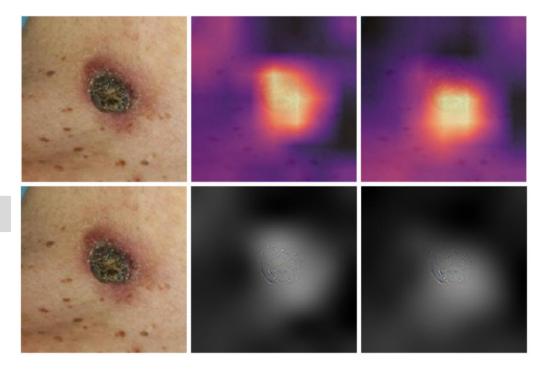
GradCAM: Visual explanation from DNN, Selvaraju [2016] Guided BP, Springenberg [2014]

### Ulcers & Tumors

#### Ulcer 0.391

Tumor 0.152

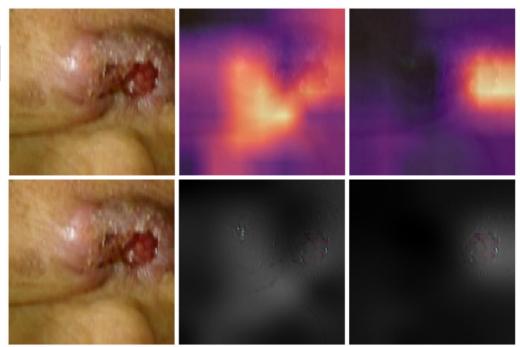
High degree of geometrical (spherical) similarity is the common factor in many samples



#### Tumor 0.78

Ulcer 0.212

Elevations and inflammations seen in Tumors, misclassifies many ulcer samples.



## Macula & Erythema

#### Erythema 0.53

Macula 0.41

Presence of pigmentation patches around the lesion can mispredict.

FoV and ROI selection could lead to better results.

Macula 0.69 Erythema 0.28

Oval/cycloidal patches makes GBP confused with the overall shape of Macula.

FOV & Depth important factors to consider



## Ulcer & Crust

### Crust 0.86 Uld

#### Ulcer 0.124

Presence of large centroid is possible source.

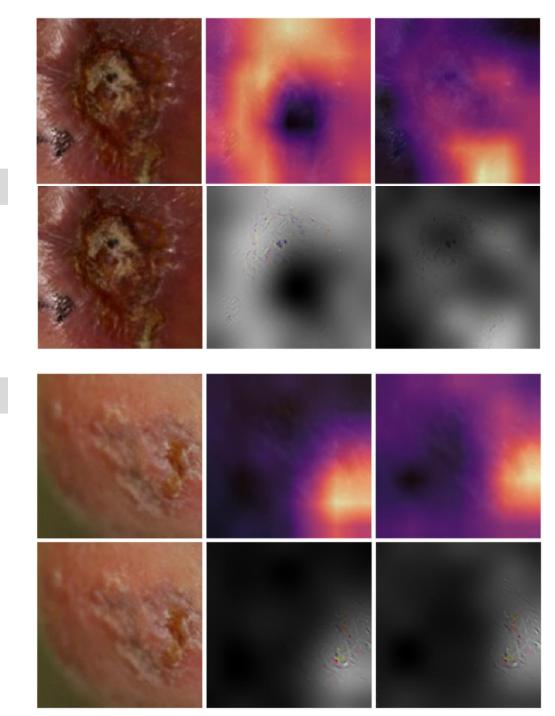
Difficult to predict as both related chronologically

Ulcer 0.91

Crust 0.06

### Oval/cycloidal patches on GBP

Selection of right Rol, illumination could improve many cases.



## Mitigation

Highlight some of the "hard-learned lessons" building this project from scratch.

Mitigation factors to look out:

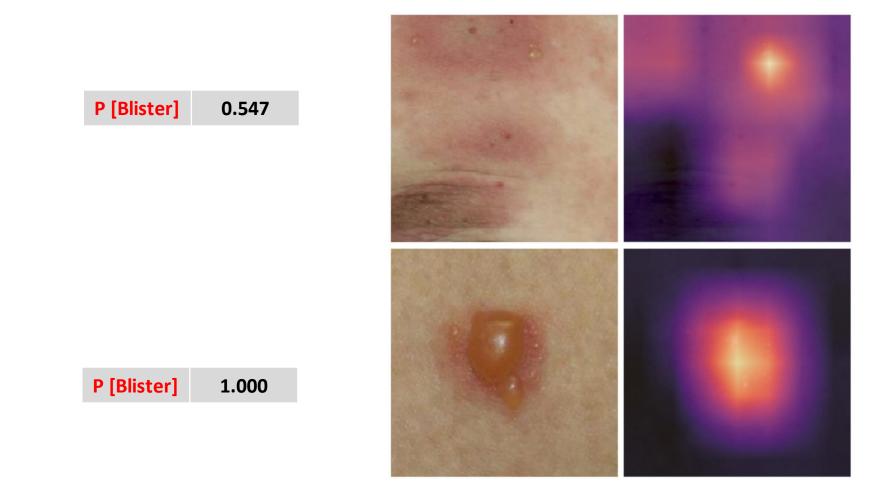
- Balancing training sets (dynamic vs static)
- Field of View / ROI selection
- Illumination and Gamma correction

## Balancing for model learning

| Confusion matrix             |        |        |            |           |         |                     |         |          |         | Conf    | usio    | n ma       | atrix  |            |           |         |               |       |          |         |         |         |
|------------------------------|--------|--------|------------|-----------|---------|---------------------|---------|----------|---------|---------|---------|------------|--------|------------|-----------|---------|---------------|-------|----------|---------|---------|---------|
| a                            | cne -  | 30     | 0          | 0         | 0       | 7                   | 0       | 3        | 0       | 0       | 0       | acne -     | 186    | 2          | 1         | 2       | 1             | 2     | 4        | 1       | 0       | 1       |
| alope                        | ecia - | 0      | 20         | 0         | 0       | 0                   | 1       | 0        | 0       | 0       | 0       | alopecia - | 1      | 143        | 0         | 1       | 0             | 2     | 0        | 2       | 0       | 0       |
| blis                         | ster - | 0      | 0          | 25        | 1       | 18                  | 0       | 1        | 0       | 0       | 0       | blister -  | 2      | 0          | 117       | 6       | 13            | 4     | 1        | 0       | 7       | 0       |
| cr                           | ust -  | 0      | 1          | 1         | 11      | 9                   | 0       | 2        | 3       | 5       | 0       | crust -    | 3      | 0          | 8         | 128     | 1             | 0     | 0        | 1       | 9       | 0       |
| Perythe<br>To<br>V<br>V<br>V | ma -   | 8      | 0          | 8         | 2       | 653                 | 2       | 13       | 6       | 3       | 5       | erythema - | 6      | 0          | 4         | 4       | 108           | 2     | 11       | 5       | 2       | 8       |
| Jer Act                      | uko -  | 0      | 1          | 0         | 0       | 9                   | 43      | 7        | 0       | 0       | 0       | erythema - | 4      | 3          | 2         | 0       | 3             | 127   | 7        | 0       | 1       | 2       |
| mac                          | ula -  | 0      | 0          | 0         | 0       | 39                  | 4       | 201      | 3       | 3       | 0       | macula -   | 3      | 0          | 1         | 4       | 14            | 3     | 115      | 7       | 1       | 2       |
| tun                          | nor -  | 0      | 0          | 0         | 1       | 10                  | 1       | 6        | 48      | 14      | 0       | tumor -    | 0      | 0          | 2         | 4       | 2             | 2     | 6        | 173     | 11      | 0       |
| ul                           | cer -  | 0      | 0          | 0         | 3       | 7                   | 0       | 0        | 7       | 139     | 0       | ulcer -    | 1      | 0          | 0         | 5       | 5             | 0     | 1        | 18      | 170     | 0       |
| wh                           | eal -  | 0      | 0          | 0         | 0       | 23                  | 0       | 1        | 0       | 0       | 2       | wheal -    | 0      | 0          | 0         | 0       | 7             | 0     | 0        | 0       | 0       | 143     |
|                              | _      | acne - | alopecia - | blister - | crust - | erythema -<br>ipaud | - leuko | macula - | tumor - | ulcer - | wheal - |            | acne - | alopecia - | blister - | crust - | pa erythema - | lerko | macula - | tumor - | ulcer - | wheal - |

Custom datasets can be small, unevenly divided. Best to use dynamic in-memory augmentation during batch selection. Larger batches preferably.

## Field of View/Object Depth

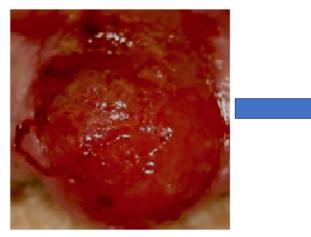


FOV selection dramatically improves performance. In usersubmitted images, pre-processing needed. Bonus: if illumination stable

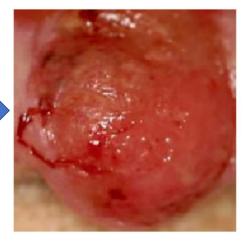
# Gamma & Illumination

Often illumination & shadow effects

Gamma adjustment ≈ 1.2 – 1.5

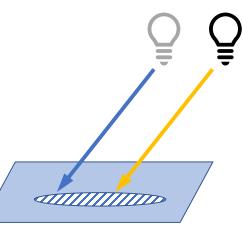


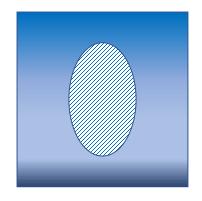
Prediction : Ulcer (98%) Actual : Tumor (1%)



**Prediction : Tumor 78%** 

Creating illumination map & reversing imbalanced lighting by normalizing.





### Conclusion

- Gap may never be entirely removed,
- [Status Quo] Racial diversity one of the hardest problems to crack. Better to focus on single one for better performance.
  (But harder in developed countries).
- Not all artifacts can be fixed in user-submitted images.
- Augmentation & Photo-grammatic corrections can improve the quality of model learning/inference dramatically.
  - Balancing training data, FOV reduction, Gamma & illumination correction

### https://github.com/souravmishra/ISIC-CVPRW19

### Thank you!

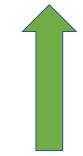
### Scope

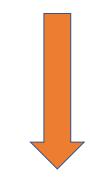
Rapid improvements in image classification tasks

- Larger better & detailed datasets
- Faster hardware resources
- Better architectures

However (the ugly truth)!

- More iterations to SOTA
- Longer train time
- Higher costs
- Small dataset reliability low







Deployment costs can adversely impact individuals or smaller groups.

### SOLUTION?

- Organic combination of proven techniques, field tested on benchmark datasets.
- Optimization by learning rate (v) adaptations.
- Transfer modus-operandi to smaller, untested data.
- Ensure repeatability.

### **CIFAR Baseline**

- Multi-class classification on CIFAR-10
- Test candidate architectures of increasing size/complexity
  Resnet-34, ResNet-50, ResNet-101, ResNet-152
  DenseNet161
- Baseline Performance

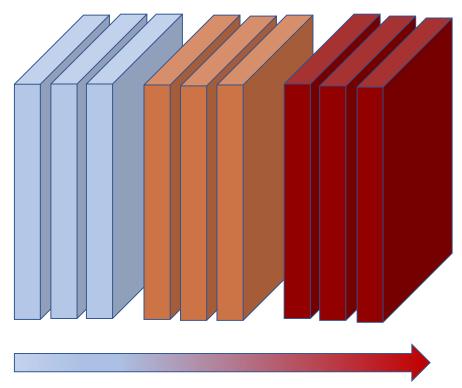
5:1 split, Early stopping, lower LR restarts BCE with logits loss

Train to 90%+ validation accuracy mark

### **Differential learning**



Gear-box need not spin all gears equally!



Reduce computational overhead by assigning different learning rates.

*Courtesy:* J Howard, T. Parr [2018]

### **CIFAR Baseline**

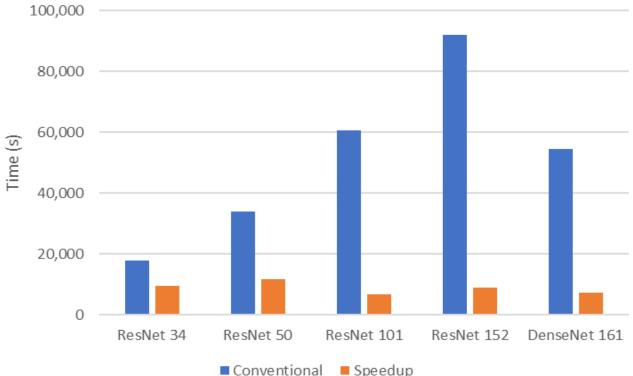
| Architecture | Accuracy (Top-1) | Time (s) |
|--------------|------------------|----------|
| ResNet 34    | 90.36%           | 17,757   |
| ResNet-50    | 90.54%           | 34,039   |
| ResNet-101   | 90.71%           | 60,639   |
| ResNet-152   | 90.68%           | 91,888   |
| DenseNet-161 | 93.02%           | 54,628   |

### **CIFAR Speedup Results**

| Architecture | Accuracy (Top-1) | Time (s) | η    |
|--------------|------------------|----------|------|
| ResNet 34    | 96.84%           | 9,565    | 1.84 |
| ResNet-50    | 96.82%           | 11,817   | 2.88 |
| ResNet-101   | 97.61%           | 6,673    | 9.09 |
| ResNet-152   | 97.78%           | 9,012    | 10.2 |
| DenseNet-161 | 97.15%           | 7,195    | 7.59 |

### **Speedup Results**

#### Time comparison Conventional vs. Speedup



Higher dividends when architecture size grows larger. Possible by offsetting the computation overhead by DLR

### **CIFAR Results**

